Search results
Results from the WOW.Com Content Network
The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.
In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...
The total angular momentum operators can be shown to satisfy the very same commutation relations, [,] = , where k, l, m ∈ {x, y, z}. Indeed, the preceding construction is the standard method [ 4 ] for constructing an action of a Lie algebra on a tensor product representation.
The Hamiltonian of the particle is: ^ = ^ + ^ = ^ + ^, where m is the particle's mass, k is the force constant, = / is the angular frequency of the oscillator, ^ is the position operator (given by x in the coordinate basis), and ^ is the momentum operator (given by ^ = / in the coordinate basis).
Another type of operator in quantum field theory, discovered in the early 1970s, is known as the anti-symmetric operator.This operator, similar to spin in non-relativistic quantum mechanics is a ladder operator that can create two fermions of opposite spin out of a boson or a boson from two fermions.
Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):
Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, [,] =, [,] =, [,] =, where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator
The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so =. The angular momentum vector L {\displaystyle \mathbf {L} } can be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity ...