Search results
Results from the WOW.Com Content Network
Mean blood pressure drops over the whole circulation, although most of the fall occurs along the small arteries and arterioles. [35] Gravity affects blood pressure via hydrostatic forces (e.g., during standing), and valves in veins, breathing, and pumping from contraction of skeletal muscles also influence blood pressure in veins. [32]
The narrowing of blood vessels leads to an increase in peripheral resistance, thereby elevating blood pressure. While vasoconstriction is a normal and essential regulatory mechanism for maintaining blood pressure and redistributing blood flow during various physiological processes, its dysregulation can contribute to pathological conditions.
When blood pressure increases, arterioles are stretched and subsequently constrict (a phenomenon known as the Bayliss effect) to counteract the increased tendency for high pressure to increase blood flow. [22] In the lungs, special mechanisms have been adapted to meet the needs of increased necessity of blood flow during exercise.
However, blood pressure quickly rises above that of the atria that are now relaxed and in diastole. This increase in pressure causes blood to flow back toward the atria, closing the tricuspid and mitral valves. Since blood is not being ejected from the ventricles at this early stage, the volume of blood within the chamber remains constant.
Compliance, in simple terms, is the degree to which a container experiences pressure or force without disruption. It is used as an indication of arterial stiffness. An increase in the age and also in the systolic blood pressure (SBP) is accompanied with decrease on arterial compliance. [6]
Blood is 92% water by weight and the rest of blood is composed of protein, nutrients, electrolytes, wastes, and dissolved gases. Depending on the health of an individual, the blood viscosity can vary (i.e., anemia causing relatively lower concentrations of protein, high blood pressure an increase in dissolved salts or lipids, etc.). [30]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Animation of a typical human red blood cell cycle in the circulatory system. This animation occurs at a faster rate (~20 seconds of the average 60-second cycle) and shows the red blood cell deforming as it enters capillaries, as well as the bars changing color as the cell alternates in states of oxygenation along the circulatory system.