Search results
Results from the WOW.Com Content Network
Histogram of total stopping times for the numbers 1 to 10 9. Total stopping time is on the x axis, frequency on the y axis. Iteration time for inputs of 2 to 10 7. Total stopping time of numbers up to 250, 1000, 4000, 20000, 100000, 500000. Consider the following operation on an arbitrary positive integer: If the number is even, divide it by two.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The decay time for a supermassive black hole of roughly 1 galaxy-mass (10 11 solar masses) due to Hawking radiation is on the order of 10 100 years. [7] Therefore, the heat death of an expanding universe is lower-bounded to occur at least one googol years in the future. A googol is considerably smaller than a centillion. [8]
The name of a number 10 3n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 10 3m+3, where m represents each group of comma-separated digits of n, with each but the last "-illion" trimmed to "-illi-", or, in the case of m = 0, either "-nilli-" or "-nillion". [17]
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
So too are the thousands, with the number of thousands followed by the word "thousand". The number one thousand may be written 1 000 or 1000 or 1,000; larger numbers are written for example 10 000 or 10,000 for ease of reading. European languages that use the comma as a decimal separator may correspondingly use the period as a thousands separator.
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number : A positive integer with exactly two positive divisors : itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd. The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.