Search results
Results from the WOW.Com Content Network
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
Thus, the nine-point center forms the center of a point reflection that maps the medial triangle to the Euler triangle, and vice versa. [citation needed] According to Lester's theorem, the nine-point center lies on a common circle with three other points: the two Fermat points and the circumcenter. [9] The Kosnita point of a triangle, a ...
In geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters.
Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
This is also the number of points of a hexagonal lattice with nearest-neighbor coupling whose distance from a given point is less than or equal to . The following image shows the building of the centered triangular numbers by using the associated figures: at each step, the previous triangle (shown in red) is surrounded by a triangular layer of ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
For any choice of trilinear coordinates x : y : z to locate a point, the actual distances of the point from the sidelines are given by a' = kx, b' = ky, c' = kz where k can be determined by the formula = + + in which a, b, c are the respective sidelengths BC, CA, AB, and ∆ is the area of ABC.
Let ABC be a plane triangle and let x : y : z be the trilinear coordinates of an arbitrary point in the plane of triangle ABC.. A straight line in the plane of ABC whose equation in trilinear coordinates has the form (,,) + (,,) + (,,) = where the point with trilinear coordinates (,,): (,,): (,,) is a triangle center, is a central line in the plane of ABC relative to ABC.