Search results
Results from the WOW.Com Content Network
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). [1] It can be parameterized in terms of either the loss angle δ or the corresponding loss tangent tan( δ ) .
This departure from the usual formula only applies for materials of rather low conductivity and at frequencies where the vacuum wavelength is not much larger than the skin depth itself. For instance, bulk silicon (undoped) is a poor conductor and has a skin depth of about 40 meters at 100 kHz (λ = 3 km). However, as the frequency is increased ...
The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or
Since this factor is not related to the radio wave path but comes from the receiving antenna, the term "free-space path loss" is a little misleading. Directivity of receiving antenna- while the above formulas are correct, the presence of Directivities Dt and Dr builds the wrong intuition in the FSPL Friis transmission formula. The formula seems ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
Bragg diffraction (also referred to as the Bragg formulation of X-ray diffraction) was first proposed by Lawrence Bragg and his father, William Henry Bragg, in 1913 [1] after their discovery that crystalline solids produced surprising patterns of reflected X-rays (in contrast to those produced with, for instance, a liquid).
Transmission loss in underwater acoustics describes the decrease of sound intensity that is reduced by a bubble curtain or other damping structure at a given frequency. The same term is sometimes used to mean propagation loss , which is a measure of the reduction in sound intensity between the sound source and a receiver, defined as the ...