Search results
Results from the WOW.Com Content Network
The quotient group is the same idea, although one ends up with a group for a final answer instead of a number because groups have more structure than an arbitrary collection of objects: in the quotient / , the group structure is used to form a natural "regrouping".
This has the intuitive meaning that the images of x and y are supposed to be equal in the quotient group. Thus, for example, r n in the list of relators is equivalent with =. [1] For a finite group G, it is possible to build a presentation of G from the group multiplication table, as follows.
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group .
In mathematics, a group is a set with an operation ... The quotient group can alternatively be ... For example, group theory is used to show that optical transitions ...
If the last group is a remainder smaller than the divisor, it can be thought of as forming an additional smaller group. For example, if 45 eggs are to be put into 12-egg cartons, then after the first 3 cartons have been filled there are 9 eggs remaining, which only partially fill the 4th carton.
For example, density (mass divided by volume, in units of kg/m 3) is said to be a "quotient", whereas mass fraction (mass divided by mass, in kg/kg or in percent) is a "ratio". [8] Specific quantities are intensive quantities resulting from the quotient of a physical quantity by mass, volume, or other measures of the system "size". [3]
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field.
Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups. Another example is the direct sum of all dihedral groups. None of these examples has a finite generating set. Explicit ...