Search results
Results from the WOW.Com Content Network
Although the moment () and displacement generally result from external loads and may vary along the length of the beam or rod, the flexural rigidity (defined as ) is a property of the beam itself and is generally constant for prismatic members. However, in cases of non-prismatic members, such as the case of the tapered beams or columns or ...
where is the deflection of the beam and is the distance along the beam. Double integration of the above equation leads to computing the deflection of the beam, and in turn, the bending stiffness of the beam. Bending stiffness in beams is also known as Flexural rigidity.
Rigidity is the property of a structure that it does not bend or flex under an applied force. The opposite of rigidity is flexibility.In structural rigidity theory, structures are formed by collections of objects that are themselves rigid bodies, often assumed to take simple geometric forms such as straight rods (line segments), with pairs of objects connected by flexible hinges.
The molecule behaves like a flexible elastic rod/beam (beam theory). Informally, for pieces of the polymer that are shorter than the persistence length, the molecule behaves like a rigid rod, while for pieces of the polymer that are much longer than the persistence length, the properties can only be described statistically, like a three ...
L is the beam length G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,
The beam is initially straight with a cross section that is constant throughout the beam length. The beam has an axis of symmetry in the plane of bending. The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending.
Rigid body, in physics, a simplification of the concept of an object to allow for modelling; Rigid transformation, in mathematics, a rigid transformation preserves distances between every pair of points; Rigidity (chemistry), the tendency of a substance to retain/maintain their shape when subjected to outside force
Consider a beam whose cross-sectional area increases in two dimensions, e.g. a solid round beam or a solid square beam. By combining the area and density formulas, we can see that the radius of this beam will vary with approximately the inverse of the square of the density for a given mass.