enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. If φ : U ⊆ R n → R is a differentiable function and γ a differentiable curve in U which starts at a point p and ends at a point q , then

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    List of integrals of exponential functions; List of integrals of logarithmic functions; List of integrals of Gaussian functions; Gradshteyn, Ryzhik, Geronimus, Tseytlin, Jeffrey, Zwillinger, and Moll's (GR) Table of Integrals, Series, and Products contains a large collection of results. An even larger, multivolume table is the Integrals and ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...

  6. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).

  7. Fundamental theorem of line integrals - Wikipedia

    en.wikipedia.org/?title=Fundamental_theorem_of...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fundamental_theorem_of_line_integrals&oldid=465804197"

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The corresponding form of the fundamental theorem of calculus is Stokes' theorem, which relates the surface integral of the curl of a vector field to the line integral of the vector field around the boundary curve. The notation curl F is more common in North America.