Search results
Results from the WOW.Com Content Network
[note 1] The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.
Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.
Birks' law [1] [2] (named after British physicist John B. Birks) [3] is an empirical formula for the light yield per path length as a function of the energy loss per path length for a particle traversing a scintillator, and gives a relation that is not linear at high loss rates.
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
Localized time-varying charge and current densities can act as sources of electromagnetic waves in a vacuum. Maxwell's equations can be written in the form of a wave equation with sources. The addition of sources to the wave equations makes the partial differential equations inhomogeneous.
When light strikes the interface between a medium with refractive index n 1 and a second medium with refractive index n 2, both reflection and refraction of the light may occur. The Fresnel equations give the ratio of the reflected wave's electric field to the incident wave's electric field, and the ratio of the transmitted wave's electric ...
List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of equations in wave theory; List of relativistic equations
In summary, Maxwell's equations successfully unified theories of light and electromagnetism, which is one of the great unifications in physics. [9] Maxwell built a simple flywheel model of electromagnetism, and Boltzmann built an elaborate mechanical model ("Bicykel") based on Maxwell's flywheel model, which he used for lecture demonstrations. [10]