Search results
Results from the WOW.Com Content Network
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible.The axiom is usually written as V = L.The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties).
In the mathematical field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.
Let X be a topological space, and let a subset be negligible if it is of first category, that is, if it is a countable union of nowhere-dense sets (where a set is nowhere-dense if it is not dense in any open set). Then the negligible sets form a sigma-ideal. Let X be a directed set, and let a subset of X be negligible if it has an upper bound ...
Set 3-1 has three possible versions: [0 1 1 1 2 T], [0 1 1 T E 1], and [0 T T 1 E 1], where the subscripts indicate adjacency intervals. The normal form is the smallest "slice of pie" (shaded) or most compact form, in this case: [0 1 1 1 2 T]. This is a list of set classes, by Forte number. [1]
In set theory, a set is finite if and only if every non-empty family of subsets has a minimal element when ordered by the inclusion relation. In abstract algebra , the concept of a maximal common divisor is needed to generalize greatest common divisors to number systems in which the common divisors of a set of elements may have more than one ...
The set V 5 contains 2 16 = 65536 elements; the set V 6 contains 2 65536 elements, which very substantially exceeds the number of atoms in the known universe; and for any natural n, the set V n+1 contains 2 ⇈ n elements using Knuth's up-arrow notation. So the finite stages of the cumulative hierarchy cannot be written down explicitly after ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of real numbers (hollow and filled circles), a subset of (filled circles), and the infimum of . Note that for totally ordered finite sets, the infimum and the minimum are equal. A set of real numbers (blue circles), a set of upper bounds of (red diamond and circles), and the smallest such upper bound, that is, the supremum of (red diamond).