Search results
Results from the WOW.Com Content Network
The collection of tensors on a vector space and its dual forms a tensor algebra, which allows products of arbitrary tensors. Simple applications of tensors of order 2 , which can be represented as a square matrix, can be solved by clever arrangement of transposed vectors and by applying the rules of matrix multiplication, but the tensor product ...
The first index i indicates that the stress acts on a plane normal to the X i-axis, and the second index j denotes the direction in which the stress acts (For example, σ 12 implies that the stress is acting on the plane that is normal to the 1 st axis i.e.;X 1 and acts along the 2 nd axis i.e.;X 2). A stress component is positive if it acts in ...
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3]
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential. For isotropic materials, the elasticity tensor has just two independent components, which can be chosen to be the bulk modulus and shear modulus. [3]
Let r(x) be the position vector of the point x with respect to the origin of the coordinate system. The notation can be simplified by noting that x = r(x). At each point we can construct a small line element dx. The square of the length of the line element is the scalar product dx • dx and is called the metric of the space.
It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand. In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of the electromagnetic stress–energy tensor , which ...