enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Algorithm X is an algorithm for solving the exact cover problem. It is a straightforward recursive, nondeterministic, depth-first, backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique. [1] [2]

  3. Eight queens puzzle - Wikipedia

    en.wikipedia.org/wiki/Eight_queens_puzzle

    If the remainder is 3, move 2 to the end of even list and 1,3 to the end of odd list (4, 6, 8, 2 – 5, 7, 9, 1, 3). Append odd list to the even list and place queens in the rows given by these numbers, from left to right (a2, b4, c6, d8, e3, f1, g7, h5).

  4. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    For this class of problems, the instance data P would be the integers m and n, and the predicate F. In a typical backtracking solution to this problem, one could define a partial candidate as a list of integers c = (c[1], c[2], …, c[k]), for any k between 0 and n, that are to be assigned to the first k variables x[1], x[2], …, x[k]. The ...

  5. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    Min-Conflicts solves the N-Queens Problem by selecting a column from the chess board for queen reassignment. The algorithm searches each potential move for the number of conflicts (number of attacking queens), shown in each square. The algorithm moves the queen to the square with the minimum number of conflicts, breaking ties randomly.

  6. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    Some of the better-known exact cover problems include tiling, the n queens problem, and Sudoku. The name dancing links , which was suggested by Donald Knuth , stems from the way the algorithm works, as iterations of the algorithm cause the links to "dance" with partner links so as to resemble an "exquisitely choreographed dance."

  7. Constraint programming - Wikipedia

    en.wikipedia.org/wiki/Constraint_programming

    Backtracking search is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

  8. Answer set programming - Wikipedia

    en.wikipedia.org/wiki/Answer_set_programming

    In ASP, search problems are reduced to computing stable models, and answer set solvers—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation ...

  9. Stack (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Stack_(abstract_data_type)

    The prototypical example of a backtracking algorithm is depth-first search, which finds all vertices of a graph that can be reached from a specified starting vertex. Other applications of backtracking involve searching through spaces that represent potential solutions to an optimization problem.