enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Supercritical airfoil - Wikipedia

    en.wikipedia.org/wiki/Supercritical_airfoil

    Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).

  3. Area rule - Wikipedia

    en.wikipedia.org/wiki/Area_rule

    A different area rule, known as the supersonic area rule, developed by NACA aerodynamicist Robert Jones in "Theory of wing-body drag at supersonic speeds", [2] is applicable at speeds beyond transonic, and in this case, the cross-sectional area requirement is established with relation to the angle of the Mach cone for the design speed.

  4. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  5. Anti-shock body - Wikipedia

    en.wikipedia.org/wiki/Anti-shock_body

    Anti-shock body is the name given by Richard T. Whitcomb to a pod positioned on the upper surface of a wing. [1] Its purpose is to reduce wave drag while travelling at transonic speeds (Mach 0.8–1.0), which includes the typical cruising range of conventional jet airliners.

  6. Transonic - Wikipedia

    en.wikipedia.org/wiki/Transonic

    Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.

  7. Wave drag - Wikipedia

    en.wikipedia.org/wiki/Wave_drag

    The supercritical airfoil is a type that results in reasonable low speed lift like a normal airfoil, but has a profile considerably closer to that of the von Kármán ogive. All modern civil airliners use forms of supercritical aerofoil and have substantial supersonic flow over the wing upper surface.

  8. Comac C909 - Wikipedia

    en.wikipedia.org/wiki/Comac_C909

    The ARJ21 has a new supercritical wing designed by Antonov with a sweepback of 25 degrees and winglets. [ 32 ] [ 33 ] [ 34 ] Some of China's supercomputers have been used to design parts for the ARJ21.

  9. Critical Mach number - Wikipedia

    en.wikipedia.org/wiki/Critical_Mach_number

    Transonic flow patterns on an aircraft wing, showing the effects at and above the critical Mach number. In aerodynamics, the critical Mach number (Mcr or M*) of an aircraft is the lowest Mach number at which the airflow over some point of the aircraft reaches the speed of sound, but does not exceed it. [1]