Search results
Results from the WOW.Com Content Network
A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion.
The above definition indicates, in the one-dimensional case, that if is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape. A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function ...
That is, given a measure of statistical dispersion, one asks for a measure of central tendency that minimizes variation: such that variation from the center is minimal among all choices of center. In a quip, "dispersion precedes location". These measures are initially defined in one dimension, but can be generalized to multiple dimensions.
The information geometry definition of divergence (the subject of this article) was initially referred to by alternative terms, including "quasi-distance" Amari (1982, p. 369) and "contrast function" Eguchi (1985), though "divergence" was used in Amari (1985) for the α-divergence, and has become standard for the general class. [1] [2]
Summary statistics can be derived from a set of deviations, such as the standard deviation and the mean absolute deviation, measures of dispersion, and the mean signed deviation, a measure of bias. [1] The deviation of each data point is calculated by subtracting the mean of the data set from the individual data point.
Dispersion captures the degree to which points in a point set are separated from each other. For most applications, spatial dispersion should be quantified in a way that is invariant to rotations and reflections. Several simple measures of spatial dispersion for a point set can be defined using the covariance matrix of
The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ( ()).
The measures of statistical dispersion derived from absolute deviation characterize various measures of central tendency as minimizing dispersion: The median is the measure of central tendency most associated with the absolute deviation. Some location parameters can be compared as follows: L 2 norm statistics: the mean minimizes the mean ...