Search results
Results from the WOW.Com Content Network
In such cases, the electron transfer is termed intermolecular electron transfer. A famous example of an inner sphere ET process that proceeds via a transitory bridged intermediate is the reduction of [CoCl(NH 3) 5] 2+ by [Cr(H 2 O) 6] 2+. [5] [6] In this case, the chloride ligand is the bridging ligand that covalently connects the redox ...
"Redox" is a portmanteau of the words "REDuction" and "OXidation." The term "redox" was first used in 1928. [6] Oxidation is a process in which a substance loses electrons. Reduction is a process in which a substance gains electrons. The processes of oxidation and reduction occur simultaneously and cannot occur independently. [5]
The energy transferred by electrons flowing through this electron transport chain is used to transport protons across the inner mitochondrial membrane, in a process called electron transport. This generates potential energy in the form of a pH gradient and the resulting electrical potential across this membrane.
Many of the enzymes in the electron transport chain are embedded within the membrane. The flow of electrons through the electron transport chain is an exergonic process. The energy from the redox reactions creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP).
Illustration of a redox reaction Sodium chloride is formed through the redox reaction of sodium metal and chlorine gas. Redox reactions can be understood in terms of the transfer of electrons from one involved species (reducing agent) to another (oxidizing agent). In this process, the former species is oxidized and the latter is reduced. Though ...
The process occurs with astonishingly high efficiency. Electrons are removed from excited chlorophyll molecules and transferred through a series of intermediate carriers to ferredoxin, a water-soluble electron carrier. As in PSII, this is a solid-state process that operates with 100% efficiency.
This is achieved by recycling NADH back to NAD+. When NAD+ is reduced to NADH, the electrons from NADH are eventually transferred to a separate organic molecule, transforming NADH back to NAD+. This process of renewing the supply of NAD+ is called fermentation, which falls into two categories. [1]
Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. . Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of ...