Search results
Results from the WOW.Com Content Network
This design is very different from that of Sanger sequencing—also known as capillary sequencing or first-generation sequencing—which is based on electrophoretic separation of chain-termination products produced in individual sequencing reactions. [6] This methodology allows sequencing to be completed on a larger scale. [7]
The workflow of a typical hybrid genome assembly experiment using second- and third-generation sequencing technologies. Figure adapted from Wang et al., 2012 [14]. One hybrid approach to genome assembly involves supplementing short, accurate second-generation sequencing data (i.e. from IonTorrent, Illumina or Roche 454) with long less accurate third-generation sequencing data (i.e. from PacBio ...
Together these were called the "next-generation" or "second-generation" sequencing (NGS) methods, in order to distinguish them from the earlier methods, including Sanger sequencing. In contrast to the first generation of sequencing, NGS technology is typically characterized by being highly scalable, allowing the entire genome to be sequenced at ...
This page was last edited on 23 April 2022, at 04:23 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Whereas the methods above describe various sequencing methods, separate related terms are used when a large portion of a genome is sequenced. Several platforms were developed to perform exome sequencing (a subset of all DNA across all chromosomes that encode genes) or whole genome sequencing (sequencing of the all nuclear DNA of a human).
These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 100,000,000 bases/machine/day in 2006. 2-base encoding is based on ligation sequencing rather than sequencing by synthesis. [1]
During sequencing, each base in the template is sequenced twice, and the resulting data are decoded according to this scheme. SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation DNA sequencing technology developed by Life Technologies and has been commercially available since 2006.
The advent of second-generation sequencing technologies has made it possible to obtain sequence information across the entire bacterial genome at relatively modest cost and effort, and MLST can now be assigned from whole-genome sequence information, rather than sequencing each locus separately as was the practice when MLST was first developed. [15]