Search results
Results from the WOW.Com Content Network
The long-run cost curve is a cost function that models this minimum cost over time, meaning inputs are not fixed. Using the long-run cost curve, firms can scale their means of production to reduce the costs of producing the good. [1] There are three principal cost functions (or 'curves') used in microeconomic analysis:
The total cost curve, if non-linear, can represent increasing and diminishing marginal returns.. The short-run total cost (SRTC) and long-run total cost (LRTC) curves are increasing in the quantity of output produced because producing more output requires more labor usage in both the short and long runs, and because in the long run producing more output involves using more of the physical ...
Alternatively, as before, k may be taken to belong to the set {−1 ,0, +1} (for negative, zero, and positive curvature respectively). Then r is unitless and a(t) has units of length. When k = ±1, a(t) is the radius of curvature of the space, and may also be written R(t). Note that when k = +1, r is essentially a third angle along with θ and φ.
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
1. The Average Fixed Cost curve (AFC) starts from a height and goes on declining continuously as production increases. 2. The Average Variable Cost curve, Average Cost curve and the Marginal Cost curve start from a height, reach the minimum points, then rise sharply and continuously. 3. The Average Fixed Cost curve approaches zero asymptotically.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
In mathematics and physics, a quantum graph is a linear, network-shaped structure of vertices connected on edges (i.e., a graph) in which each edge is given a length and where a differential (or pseudo-differential) equation is posed on each edge. An example would be a power network consisting of power lines (edges) connected at transformer ...
Integration of an absorption coefficient over a path from s 1 and s 2 affords the optical thickness (τ) of that path, a dimensionless quantity that is used in some variants of the Schwarzschild equation. When emission is ignored, the incoming radiation is reduced by a factor for 1/e when transmitted over a path with an optical thickness of 1.