Search results
Results from the WOW.Com Content Network
The 3′-end (usually pronounced "three prime end") of a negative sense strand, and the 5′-end (usually pronounced "five prime end") of a positive sense strand, is called the left end, and the 5′-end of the negative sense strand, and the 3′-end of a positive sense strand, is called the right end. [2] [4] [5]
The 3′-end (three prime end) of a strand is so named due to it terminating at the hydroxyl group of the third carbon in the sugar-ring, and is known as the tail end. The 3′-hydroxyl is necessary in the synthesis of new nucleic acid molecules as it is ligated (joined) to the 5′-phosphate of a separate nucleotide, allowing the formation of ...
A 3′ hydroxyl end of the left-hand (3′) terminus pairs with an internal base to prime initial DNA synthesis, resulting in the conversion of the ssDNA genome to its first duplex form. [ 1 ] [ 7 ] This is a monomeric double-stranded DNA molecule in which the two strands are covalently cross-linked to each other at the left-end by a single ...
Integrase accomplishes this using two reactions: 3-prime end processing, and the strand transfer reaction. In the first of these two reactions, the viral DNA is processed by the removal of two deoxynucleotides. In the strand transfer reaction, these processed 3-prime viral DNA ends are covalently bound to the host chromosomal DNA. [3]
The 3'-end of the nicked strand remains as a free hydroxyl (OH) end that acts as a signal for the host DNA polymerase to replicate the genome. Replication commences at the 3'-OH end and is performed by extending the 3'-end of the positive strand using the negative strand as a template for replication. {refer to DNA replication} Synthesis of the ...
During transcription, the original template strand is usually read from the 3' to the 5' end from beginning to end. Subgenomic mRNAs are created when transcription begins at the 3' end of the template strand (or 5' of the to-be-newly synthesized template) and begins to copy towards the 5' end of the template strand before "jumping" to the end of the template and copying the last nucleotides of ...
Typical structure of a mature eukaryotic mRNA. Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases.
[3] Stem-loop structure of an RNA molecule. The 3′-UTR also contains sequences that signal additions to be made, either to the transcript itself or to the product of translation. For example, there are two different polyadenylation signals present within the 3′-UTR that signal the addition of the poly(A) tail.