enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at ( x , y ) implies that f xx and f yy have the same sign there.

  3. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    An example of a saddle point is when there is a critical point with a relative minimum along one axial direction (between peaks) and at a relative maximum along the crossing axis. However, a saddle point need not be in this form.

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows: If the Hessian is positive-definite at x , {\displaystyle x,} then f {\displaystyle f} attains an isolated local minimum at x . {\displaystyle x.}

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.

  8. Energy minimization - Wikipedia

    en.wikipedia.org/wiki/Energy_minimization

    A first-order saddle point is a position on the PES corresponding to a minimum in all directions except one; a second-order saddle point is a minimum in all directions except two, and so on. Defined mathematically, an n th order saddle point is characterized by the following: ∂ E /∂ r = 0 and the Hessian matrix, ∂∂ E /∂ r i ∂ r j ...

  9. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    A point may be local minimum when it is lower in energy compared to its surrounding only or a global minimum which is the lowest energy point on the entire potential energy surface. Saddle point represents a maximum along only one direction (that of the reaction coordinate) and is a minimum along all other directions. In other words, a saddle ...