Search results
Results from the WOW.Com Content Network
Each row corresponds to a change in log (time before present) (that is, the logarithm of the time before the present) of about 0.1 (using base 10 logarithms). The dividing points are taken from the R′′20 Renard numbers. Thus each row represents about 21% of the time from its beginning until the present.
A logarithmic timeline is a timeline laid out according to a logarithmic scale. This necessarily implies a zero point and an infinity point, neither of which can be displayed. The most natural zero point is the Big Bang, looking forward, but the most common is the ever-changing present, looking backward. (Also possible is a zero point in the ...
The logarithm in the table, however, is of that sine value divided by 10,000,000. [1]: p. 19 The logarithm is again presented as an integer with an implied denominator of 10,000,000. The table consists of 45 pairs of facing pages. Each pair is labeled at the top with an angle, from 0 to 44 degrees, and at the bottom from 90 to 45 degrees.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...
Zipf's law plot for the first 10 million words in 30 Wikipedias (as of October 2015) in a log-log scale In many texts in human languages, word frequencies approximately follow a Zipf distribution with exponent s close to 1; that is, the most common word occurs about n times the n -th most common one.
Logarithmic can refer to: Logarithm , a transcendental function in mathematics Logarithmic scale , the use of the logarithmic function to describe measurements
He then called the logarithm, with this number as base, the natural logarithm. As noted by Howard Eves, "One of the anomalies in the history of mathematics is the fact that logarithms were discovered before exponents were in use." [16] Carl B. Boyer wrote, "Euler was among the first to treat logarithms as exponents, in the manner now so ...