enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.

  3. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest ...

  4. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  5. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    for the approximate posterior over and the approximate log marginal likelihood respectively. The main weaknesses of Laplace's approximation are that it is symmetric around the mode and that it is very local: the entire approximation is derived from properties at a single point of the target density.

  6. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Step 5: The posterior distribution is approximated with the accepted parameter points. The posterior distribution should have a non-negligible probability for parameter values in a region around the true value of in the system if the data are sufficiently informative. In this example, the posterior probability mass is evenly split between the ...

  7. How Do I Calculate My Premium Tax Credit? - AOL

    www.aol.com/finance/irs-form-8962-calculating...

    Continue reading → The post All About IRS Form 8962 and Calculating Your Premium Tax Credit appeared first on SmartAsset Blog. With Form 8962, you are reconciling the tax credit you are entitled ...

  8. Credible interval - Wikipedia

    en.wikipedia.org/wiki/Credible_interval

    For example, in an experiment that determines the distribution of possible values of the parameter , if the probability that lies between 35 and 45 is =, then is a 95% credible interval. Credible intervals are typically used to characterize posterior probability distributions or predictive probability distributions. [ 1 ]

  9. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.