Search results
Results from the WOW.Com Content Network
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Using the definition of the cross product, the magnetic force can also be written as a scalar equation: [10]: 357 = where F magnetic, v, and B are the scalar magnitude of their respective vectors, and θ is the angle between the velocity of the particle and the magnetic field.
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
In physics, the magnetomotive force (abbreviated mmf or MMF, symbol ) is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. [1] It is the property of certain substances or phenomena that give rise to magnetic fields : F = Φ R , {\displaystyle {\mathcal {F}}=\Phi {\mathcal {R}},} where Φ is the ...
Gravitational force is an example of a conservative force, while frictional force is an example of a non-conservative force. Other examples of conservative forces are: force in elastic spring, electrostatic force between two electric charges, and magnetic force between two magnetic poles. The last two forces are called central forces as they ...
Not all forces are contact forces; for example, the weight of an object is the force between the object and the Earth, even though the two do not need to make contact. Gravitational forces, electrical forces and magnetic forces are body forces and can exist without contact occurring.