Search results
Results from the WOW.Com Content Network
[2] Overall, transcription within bacteria is a highly regulated process that is controlled by the integration of many signals at a given time. Bacteria heavily rely on transcription and translation to generate proteins that help them respond specifically to their environment. [4]
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
The termination of translation requires coordination between release factor proteins, the mRNA sequence, and ribosomes. Once a termination codon is read, release factors RF-1, RF-2, and RF-3 contribute to the hydrolysis of the growing polypeptide, which terminates the chain. Bases downstream the stop codon affect the activity of these release ...
The transcription-translation process description, mentioning only the most basic "elementary" processes, consists of: production of mRNA molecules (including splicing), initiation of these molecules with help of initiation factors (e.g., the initiation can include the circularization step though it is not universally required),
A number of transcription factors govern this process with homologs in both bacteria and eukaryotes, with the core machinery more similar to eukaryotic transcription. [1] [2] Because archaea lack a membrane-enclosed nucleus like bacteria do, transcription and translation can happen at the same time on a newly-generated piece of mRNA.
Once RNA polymerase reaches the termination signal, transcription is terminated. [1] In bacteria, there are two main types of termination signals: intrinsic and factor-dependent terminators. [1] In the context of translation, a termination signal is the stop codon on the mRNA that elicits the release of the growing peptide from the ribosome. [2]
This is part of the process that regulates the transcription of RNA to preserve gene expression integrity and are present in both eukaryotes and prokaryotes, although the process in bacteria is more widely understood. [1] The most extensively studied and detailed transcriptional termination factor is the Rho (ρ) protein of E. coli. [2]