enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series of a complex-valued P-periodic function (), integrable over the interval [,] on the real line, is defined as a trigonometric series of the form =, such that the Fourier coefficients are complex numbers defined by the integral [14] [15] = .

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    If () is a periodic function, with period , that has a convergent Fourier series, then: ^ = = (), where are the Fourier series coefficients of , and is the Dirac delta function. In other words, the Fourier transform is a Dirac comb function whose teeth are multiplied by the Fourier series coefficients.

  4. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...

  5. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  6. Generalized Fourier series - Wikipedia

    en.wikipedia.org/wiki/Generalized_Fourier_series

    A generalized Fourier series is the expansion of a square integrable function into a sum of square integrable orthogonal basis functions. The standard Fourier series uses an orthonormal basis of trigonometric functions, and the series expansion is applied to periodic functions. In contrast, a generalized Fourier series uses any set of ...

  7. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    If f is an odd function with period , then the Fourier Half Range sine series of f is defined to be = = ⁡ which is just a form of complete Fourier series with the only difference that and are zero, and the series is defined for half of the interval.

  8. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  9. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    By the maximum principle, u is the only such harmonic function on D. Convolutions with this approximate unit gives an example of a summability kernel for the Fourier series of a function in L 1 (T) (Katznelson 1976). Let f ∈ L 1 (T) have Fourier series {f k}.