enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series of a complex-valued P-periodic function (), integrable over the interval [,] on the real line, is defined as a trigonometric series of the form =, such that the Fourier coefficients are complex numbers defined by the integral [14] [15] = .

  3. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.

  5. Trigonometric polynomial - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_polynomial

    For complex coefficients, there is no difference between such a function and a finite Fourier series. Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to the interpolation of periodic functions. They are used also in the discrete Fourier transform.

  6. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    Technically, Clairaut's work was a cosine-only series (a form of discrete cosine transform), while Lagrange's work was a sine-only series (a form of discrete sine transform); a true cosine+sine DFT was used by Gauss in 1805 for trigonometric interpolation of asteroid orbits. [18]

  7. Modular form - Wikipedia

    en.wikipedia.org/wiki/Modular_form

    In mathematics, a modular form is a (complex) ... Since f (z + 1) = f (z), modular forms are periodic functions, with period 1, and thus have a Fourier series.

  8. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    By applying Euler's formula (= ⁡ + ⁡), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...

  9. Parseval's theorem - Wikipedia

    en.wikipedia.org/wiki/Parseval's_theorem

    Even more generally, given an abelian locally compact group G with Pontryagin dual G^, Parseval's theorem says the Pontryagin–Fourier transform is a unitary operator between Hilbert spaces L 2 (G) and L 2 (G^) (with integration being against the appropriately scaled Haar measures on the two groups.)