Search results
Results from the WOW.Com Content Network
Baeyer–Drewson indigo synthesis; Baeyer–Villiger oxidation, Baeyer–Villiger rearrangement [12]; Bakeland process (Bakelite) Baker–Venkataraman rearrangement, Baker–Venkataraman transformation [13] [14] [15] [16]
Organic reactions can be organized into several basic types. Some reactions fit into more than one category. For example, some substitution reactions follow an addition-elimination pathway. This overview isn't intended to include every single organic reaction. Rather, it is intended to cover the basic reactions.
The following outline is provided as an overview of and topical guide to organic chemistry: . Organic chemistry is the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of carbon-based compounds, hydrocarbons, and their derivatives.
List of organic name reactions; Subcategories. This category has the following 21 subcategories, out of 21 total. A. Amide synthesis reactions (8 P) C.
is an alkaline solution of potassium permanganate; used in organic chemistry as a qualitative test for the presence of unsaturation, such as double bonds; N-Bromosuccinimide: used in radical substitution and electrophilic addition reactions in organic chemistry. Also acts as a mild oxidizer to oxidize benzylic or allylic alcohols.
Organic synthesis is an important chemical process that is integral to many scientific fields. Examples of fields beyond chemistry that require organic synthesis include the medical industry, pharmaceutical industry, and many more. Organic processes allow for the industrial-scale creation of pharmaceutical products.
The study of the properties, reactions, and syntheses of organic compounds comprise the discipline known as organic chemistry. For historical reasons, a few classes of carbon-containing compounds (e.g., carbonate salts and cyanide salts), along with a few other exceptions (e.g., carbon dioxide , and even hydrogen cyanide despite the fact it ...
A name reaction (or named reaction) is a chemical reaction named after its discoverer(s) or developer(s). Among the tens of thousands of organic reactions that are known, hundreds of such reactions are typically identified by the eponym . [ 1 ]