Search results
Results from the WOW.Com Content Network
Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...
Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. [4] It is written in C++, with a Python interface. [5]
SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.
spaCy (/ s p eɪ ˈ s iː / spay-SEE) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. [3] [4] The library is published under the MIT license and its main developers are Matthew Honnibal and Ines Montani, the founders of the software company Explosion.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]
The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation. Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5]
Apache MXNet is an open-source deep learning software framework that trains and deploys deep neural networks. It aims to be scalable, allows fast model training , and supports a flexible programming model and multiple programming languages (including C++ , Python , Java , Julia , MATLAB , JavaScript , Go , R , Scala , Perl , and Wolfram Language ).
Alongside, OpenHarmony Native device-side AI support for training interface and ArkTS programming interface for its NNRt (Neural Network Runtime) backend configurations via MindSpore Lite AI framework codebase introduced in API 11 Beta 1 of OpenHarmony 4.1.