Search results
Results from the WOW.Com Content Network
Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock. This chart shows the oblique shock angle, β, as a function of the corner angle, θ, for a few constant M 1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic.
The term shock polar is generally used with the graphical representation of the Rankine–Hugoniot equations in either the hodograph plane or the pressure ratio-flow deflection angle plane. The polar itself is the locus of all possible states after an oblique shock. The shock polar was first introduced by Adolf Busemann in 1929. [1]
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.
In fluid dynamics, a moving shock is a shock wave that is travelling through a fluid (often gaseous) medium with a velocity relative to the velocity of the fluid already making up the medium. [1] As such, the normal shock relations require modification to calculate the properties before and after the moving shock.
The Euler equations are the governing equations for inviscid flow. To implement shock-capturing methods, the conservation form of the Euler equations are used. For a flow without external heat transfer and work transfer (isoenergetic flow), the conservation form of the Euler equation in Cartesian coordinate system can be written as + + + = where the vectors U, F, G, and H are given by
A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...