enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oblique shock - Wikipedia

    en.wikipedia.org/wiki/Oblique_shock

    Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock. This chart shows the oblique shock angle, β, as a function of the corner angle, θ, for a few constant M 1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic.

  3. Shock polar - Wikipedia

    en.wikipedia.org/wiki/Shock_polar

    The term shock polar is generally used with the graphical representation of the Rankine–Hugoniot equations in either the hodograph plane or the pressure ratio-flow deflection angle plane. The polar itself is the locus of all possible states after an oblique shock. The shock polar was first introduced by Adolf Busemann in 1929. [1]

  4. Shocks and discontinuities (magnetohydrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Shocks_and_discontinuities...

    In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

  5. Rankine–Hugoniot conditions - Wikipedia

    en.wikipedia.org/wiki/Rankine–Hugoniot_conditions

    A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...

  6. Normal shock tables - Wikipedia

    en.wikipedia.org/wiki/Normal_shock_tables

    In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.

  7. Moving shock - Wikipedia

    en.wikipedia.org/wiki/Moving_shock

    In fluid dynamics, a moving shock is a shock wave that is travelling through a fluid (often gaseous) medium with a velocity relative to the velocity of the fluid already making up the medium. [1] As such, the normal shock relations require modification to calculate the properties before and after the moving shock.

  8. Shock-capturing method - Wikipedia

    en.wikipedia.org/wiki/Shock-capturing_method

    The Euler equations are the governing equations for inviscid flow. To implement shock-capturing methods, the conservation form of the Euler equations are used. For a flow without external heat transfer and work transfer (isoenergetic flow), the conservation form of the Euler equation in Cartesian coordinate system can be written as + + + = where the vectors U, F, G, and H are given by

  9. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...