Search results
Results from the WOW.Com Content Network
The two types of Schwann cells are myelinating and nonmyelinating. [1] Myelinating Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. The Schwann cell promoter is present in the downstream region of the human dystrophin gene that gives shortened transcript that are again synthesized in a tissue-specific manner.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.
In the PNS, myelin protein zero (MPZ or P0) has a similar role to that of PLP in the CNS in that it is involved in holding together the multiple concentric layers of glial cell membrane that constitute the myelin sheath. The primary lipid of myelin is a glycolipid called galactocerebroside. The intertwining hydrocarbon chains of sphingomyelin ...
The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1] Oligodendrocytes are found exclusively in the CNS, which comprises the brain and spinal cord.
When a longitudinal section is made through a myelinating Schwann cell at the node, three distinctive segments are represented: the stereotypic internode, the paranodal region, and the node itself. In the internodal region, the Schwann cell has an outer collar of cytoplasm, a compact myelin sheath, and inner collar of cytoplasm, and the axolemma.
His Ph.D. work identified glial growth factor (GGF), a protein critical for Schwann cell proliferation, elucidating its biochemical properties and distinguishing it from other growth factors. [6] In his postdoctoral work with Axel, he cloned the Schwann cell gene that encodes myelin protein zero (MPZ), the major protein of the peripheral myelin ...
The inner mesaxon (Terminologia histologica: Mesaxon internum) is the connection between the myelin sheath and the inner part of the cell membrane of the Schwann cell, which is directly opposite the axolemma, i.e. the cell membrane of the nerve fibre ensheathed by the Schwann cell.