enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    The circle-valued map might be useful, "persistence theory for circle-valued maps promises to play the role for some vector fields as does the standard persistence theory for scalar fields", as commented in Dan Burghelea et al. [58] The main difference is that Jordan cells (very similar in format to the Jordan blocks in linear algebra) are ...

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  5. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  6. Vector field reconstruction - Wikipedia

    en.wikipedia.org/wiki/Vector_field_reconstruction

    In a nutshell, once a set of measurements of the system state over some period of time has been acquired, one then finds the derivatives of these measurements, which forms a local vector field. They can then determine a global vector field consistent with this local field. This is usually done by a least squares fit to the derivative data.

  7. Numerical range - Wikipedia

    en.wikipedia.org/wiki/Numerical_range

    In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set = {, } = { , , ‖ ‖ =}where denotes the conjugate transpose of the vector.

  8. Polyvector field - Wikipedia

    en.wikipedia.org/wiki/Polyvector_field

    A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology , multivector fields are often encountered as tensor fields of type ( 0 , k ) {\displaystyle (0,k)} , except in the ...

  9. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 or greater than 1); the ...