Search results
Results from the WOW.Com Content Network
In computer science, locality of reference, also known as the principle of locality, [1] is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. [2] There are two basic types of reference locality – temporal and spatial locality.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
Data layout is critical for correctly passing arrays between programs written in different programming languages. It is also important for performance when traversing an array because modern CPUs process sequential data more efficiently than nonsequential data. This is primarily due to CPU caching which exploits spatial locality of reference. [1]
Set-associative cache is a trade-off between direct-mapped cache and fully associative cache. A set-associative cache can be imagined as a n × m matrix. The cache is divided into ‘n’ sets and each set contains ‘m’ cache lines. A memory block is first mapped onto a set and then placed into any cache line of the set.
In computing, cache replacement policies (also known as cache replacement algorithms or cache algorithms) are optimizing instructions or algorithms which a computer program or hardware-maintained structure can utilize to manage a cache of information. Caching improves performance by keeping recent or often-used data items in memory locations ...
[1] [2] The novelty of PGAS is that the portions of the shared memory space may have an affinity for a particular process, thereby exploiting locality of reference in order to improve performance. A PGAS memory model is featured in various parallel programming languages and libraries, including: Coarray Fortran , Unified Parallel C , Split-C ...