Search results
Results from the WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse. A chord that passes through a circle's center point is the circle's diameter.
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
The line joining two self-conjugate points cannot be a self-conjugate line. A line cannot contain more than two self-conjugate points. A polarity induces an involution of conjugate points on any line that is not self-conjugate. A triangle in which each vertex is the pole of the opposite side is called a self-polar triangle.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.
The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points (its endpoints). Euclid's Elements defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of ...
Let A and B be two points with Cartesian coordinates (x 1, y 1, z 1) and (x 2, y 2, z 2) and P be a point on the line through A and B. If A P : P B = m : n {\displaystyle AP:PB=m:n} . Then the section formula gives the coordinates of P as