Search results
Results from the WOW.Com Content Network
The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity.
In mathematical logic, an alternative set theory is any of the alternative mathematical approaches to the concept of set and any alternative to the de facto standard set theory described in axiomatic set theory by the axioms of Zermelo–Fraenkel set theory.
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
An inner model of Zermelo–Fraenkel set theory (ZF) is a transitive class that includes all the ordinals and satisfies all the axioms of ZF. The canonical example is the constructible universe L developed by Gödel. One reason that the study of inner models is of interest is that it can be used to prove consistency results.
Download QR code; Print/export ... This page is a list of articles related to set theory. ... Class (set theory) Complement (set theory) ...
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
The difference between the interval vectors of a set and its complement is <X, X, X, X, X, X/2>, where (in base-ten) X = 12 – 2C, where C is the smaller set's cardinality. In nearly all cases, complements of unsymmetrical sets are related by inversion—i.e., the complement of an "A" version of a set of cardinality C is (usually) the "B ...