enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so ...

  3. Signedness - Wikipedia

    en.wikipedia.org/wiki/Signedness

    For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).

  4. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  5. Sign extension - Wikipedia

    en.wikipedia.org/wiki/Sign_extension

    In the Intel x86 instruction set, for example, there are two ways of doing sign extension: using the instructions cbw , cwd , cwde , and cdq : convert the byte to word, word to doubleword, word to extended doubleword, and doubleword to quadword, respectively (in the x86 context a byte has 8 bits, a word 16 bits, a doubleword and extended ...

  6. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    2.3434e−6 = 2.3434 × 10 −6 = 2.3434 × 0.000001 = 0.0000023434 The advantage of this scheme is that by using the exponent we can get a much wider range of numbers, even if the number of digits in the significand, or the "numeric precision", is much smaller than the range.

  7. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    A more efficient encoding can be designed using the fact that the exponent range is of the form 3×2 k, so the exponent never starts with 11. Using the Decimal32 encoding (with a significand of 3*2+1 decimal digits) as an example (e stands for exponent, m for mantissa, i.e. significand):

  8. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  9. Signed-digit representation - Wikipedia

    en.wikipedia.org/wiki/Signed-digit_representation

    Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries. [1] In the binary numeral system, a special case signed-digit representation is the non-adjacent form, which can offer speed benefits with minimal space overhead.

  1. Related searches decimal to signed binary converter calculator 2 variables 1 3 0 x86 64 exe

    binary number systemsbinary number symbols