Search results
Results from the WOW.Com Content Network
In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so ...
For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
In the Intel x86 instruction set, for example, there are two ways of doing sign extension: using the instructions cbw , cwd , cwde , and cdq : convert the byte to word, word to doubleword, word to extended doubleword, and doubleword to quadword, respectively (in the x86 context a byte has 8 bits, a word 16 bits, a doubleword and extended ...
2.3434e−6 = 2.3434 × 10 −6 = 2.3434 × 0.000001 = 0.0000023434 The advantage of this scheme is that by using the exponent we can get a much wider range of numbers, even if the number of digits in the significand, or the "numeric precision", is much smaller than the range.
A more efficient encoding can be designed using the fact that the exponent range is of the form 3×2 k, so the exponent never starts with 11. Using the Decimal32 encoding (with a significand of 3*2+1 decimal digits) as an example (e stands for exponent, m for mantissa, i.e. significand):
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries. [1] In the binary numeral system, a special case signed-digit representation is the non-adjacent form, which can offer speed benefits with minimal space overhead.