enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip systems in zirconium alloys. 𝒃 and 𝒏 are the slip direction and plane, respectively, and 𝝎 is the rotation axis calculated in the present work, orthogonal to both the slip plane normal and slip direction. The crystal direction of the rotation axis vectors is labelled on the IPF colour key.

  3. Schmid's law - Wikipedia

    en.wikipedia.org/wiki/Schmid's_Law

    Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: [2] =

  4. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    In crystalline metals, slip occurs in specific directions on crystallographic planes, and each combination of slip direction and slip plane will have its own Schmid factor. As an example, for a face-centered cubic (FCC) system the primary slip plane is {111} and primary slip directions exist within the <110> permutation families.

  5. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    Widening of the slip band: Screw dislocation can have high enough resolved shear stress for a glide on more than one slip plane. Cross-slip can occur. But this leaves some segments of dislocation on the original slip plane. Dislocation can cross-slip back on to a parallel primary slip plane. where it forms a new dislocation source, and the ...

  6. Slip angle - Wikipedia

    en.wikipedia.org/wiki/Slip_angle

    The x-axis is in the ground plane and the midplane and is oriented forward, approximately in the direction of travel; the y-axis is also in the ground plane and rotated 90º clockwise from the x-axis when viewed from above; and the z-axis is normal to the ground plane and downward from the origin. Slip angle and camber angle are also shown.

  7. Frank–Read source - Wikipedia

    en.wikipedia.org/wiki/Frank–Read_source

    Consider a straight dislocation in a crystal slip plane with its two ends, A and B, pinned. If a shear stress τ {\displaystyle \tau } is exerted on the slip plane then a force F = τ ⋅ b x {\displaystyle F=\tau \cdot bx} , where b is the Burgers vector of the dislocation and x is the distance between the pinning sites A and B, is exerted on ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Slip (vehicle dynamics) - Wikipedia

    en.wikipedia.org/wiki/Slip_(vehicle_dynamics)

    In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).