enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see commutativity ...

  5. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  6. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:

  7. Titchmarsh convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Titchmarsh_convolution_theorem

    Above, denotes the support of a function f (i.e., the closure of the complement of f-1 (0)) and and denote the infimum and supremum. This theorem essentially states that the well-known inclusion supp ⁡ φ ∗ ψ ⊂ supp ⁡ φ + supp ⁡ ψ {\displaystyle \operatorname {supp} \varphi \ast \psi \subset \operatorname {supp} \varphi ...

  8. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  9. Young's convolution inequality - Wikipedia

    en.wikipedia.org/wiki/Young's_convolution_inequality

    Young's inequality has an elementary proof with the non-optimal constant 1. [4]We assume that the functions ,,: are nonnegative and integrable, where is a unimodular group endowed with a bi-invariant Haar measure .