enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    An early occurrence of proof by contradiction can be found in Euclid's Elements, Book 1, Proposition 6: [7] If in a triangle two angles equal one another, then the sides opposite the equal angles also equal one another. The proof proceeds by assuming that the opposite sides are not equal, and derives a contradiction.

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  4. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The method of exhaustion typically required a form of proof by contradiction, known as reductio ad absurdum. This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area.

  5. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  6. Minimal counterexample - Wikipedia

    en.wikipedia.org/wiki/Minimal_counterexample

    In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction. [1] [2] More specifically, in trying to prove a proposition P, one first assumes ...

  7. Wiles's proof of Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's...

    Outline proof Comment Part 1: setting up the proof 1 We start by assuming (for the sake of contradiction) that Fermat's Last Theorem is incorrect. That would mean there is at least one non-zero solution (a, b, c, n) (with all numbers rational and n > 2 and prime) to a n + b n = c n. 2

  8. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  9. Talk:Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Talk:Proof_by_contradiction

    They (1) assume that P is false, (2) show that a statement ~Q follows from ~P where (3) Q is a known truth that is independent of P. In a proof by contradiction, both Q and ~Q have to follow from ~Q. In the Pythagorean example of proof by contradiction, the claimed contradiction is "a^2+b^2<c^2" and "a^2+b^2=c^2".