Search results
Results from the WOW.Com Content Network
A cyclic ether and high-boiling solvent (b.p. 101.1 °C). Tetrahydrofuran (THF) A cyclic ether, one of the most polar simple ethers that is used as a solvent. Anisole (methoxybenzene) An aryl ether and a major constituent of the essential oil of anise seed. Crown ethers: Cyclic polyethers that are used as phase transfer catalysts. Polyethylene ...
A molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule. For example, boron trifluoride (BF 3) has a trigonal planar arrangement of three polar bonds at 120°. This results in no overall dipole ...
Ether cleavage refers to chemical substitution reactions that lead to the cleavage of ethers. Due to the high chemical stability of ethers, the cleavage of the C-O bond is uncommon in the absence of specialized reagents or under extreme conditions. [1] [2] In organic chemistry, ether cleavage is an acid catalyzed nucleophilic substitution reaction.
Substituents can affect carbonyl groups by addition or subtraction of electron density by means of a sigma bond. [4] ΔHσ values are much greater when the substituents on the carbonyl group are more electronegative than carbon. [4] A carbonyl compound. The polarity of C=O bond also enhances the acidity of any adjacent C-H bonds.
The most common arrangement of hydrogen atoms around an oxygen is tetrahedral with two hydrogen atoms covalently bonded to oxygen and two attached by hydrogen bonds. Since the hydrogen bonds vary in length many of these water molecules are not symmetrical and form transient irregular tetrahedra between their four associated hydrogen atoms. [4]
The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [ 2 ] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction .
Being highly polar, imides exhibit good solubility in polar media. The N–H center for imides derived from ammonia is acidic and can participate in hydrogen bonding . Unlike the structurally related acid anhydrides, they resist hydrolysis and some can even be recrystallized from boiling water.
A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. [1] [2] [3]: 16–22 Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, [4] and in organic compounds such as alcohols, ethers, and carbonyl compounds.