Search results
Results from the WOW.Com Content Network
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
The conjugacy definition would also allow a mirror image of the structure, but this is not needed, the structure itself is achiral. For example, if a symmetry group contains a 3-fold axis of rotation, it contains rotations in two opposite directions. (The structure is chiral for 11 pairs of space groups with a screw axis.)
A non-chiral figure is called achiral or amphichiral. The helix (and by extension a spun string, a screw, a propeller, etc.) and Möbius strip are chiral two-dimensional objects in three-dimensional ambient space. The J, L, S and Z-shaped tetrominoes of the popular video game Tetris also exhibit chirality, but only in a two-dimensional space.
The full tetrahedral group T d with fundamental domain. T d, *332, [3,3] or 4 3m, of order 24 – achiral or full tetrahedral symmetry, also known as the (2,3,3) triangle group. This group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S 4 (4) axes.
The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All nontrivial torus knots are chiral. The Alexander polynomial cannot distinguish a knot from its mirror image, but the Jones polynomial can in some cases; if V k ( q ) ≠ V k ( q −1 ), then the knot is chiral, however the converse is not true.
A theory that is asymmetric with respect to chiralities is called a chiral theory, while a non-chiral (i.e., parity-symmetric) theory is sometimes called a vector theory. Many pieces of the Standard Model of physics are non-chiral, which is traceable to anomaly cancellation in chiral theories.
Chirality with hands and two enantiomers of a generic amino acid The direction of current flow and induced magnetic flux follow a "handness" relationship. The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself.
One example is the chiral amino acid alanine, which has two optical isomers, and they are labeled according to which isomer of glyceraldehyde they come from. On the other hand, glycine , the amino acid derived from glyceraldehyde, has no optical activity, as it is not chiral (it's achiral).