Search results
Results from the WOW.Com Content Network
The Chebyshev polynomials form a complete orthogonal system. The Chebyshev series converges to f(x) if the function is piecewise smooth and continuous. The smoothness requirement can be relaxed in most cases – as long as there are a finite number of discontinuities in f(x) and its derivatives. At a discontinuity, the series will converge to ...
One can obtain polynomials very close to the optimal one by expanding the given function in terms of Chebyshev polynomials and then cutting off the expansion at the desired degree. This is similar to the Fourier analysis of the function, using the Chebyshev polynomials instead of the usual trigonometric functions.
Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables x = cos θ {\displaystyle x=\cos \theta } and use a discrete cosine transform (DCT) approximation for ...
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:
The first Chebyshev function ϑ (x) or θ (x) is given by ϑ ( x ) = ∑ p ≤ x log p {\displaystyle \vartheta (x)=\sum _{p\leq x}\log p} where log {\displaystyle \log } denotes the natural logarithm , with the sum extending over all prime numbers p that are less than or equal to x .
In applied mathematics, a discrete Chebyshev transform (DCT) is an analog of the discrete Fourier transform for a function of a real interval, converting in either direction between function values at a set of Chebyshev nodes and coefficients of a function in Chebyshev polynomial basis. Like the Chebyshev polynomials, it is named after Pafnuty ...
In mathematics, Chebyshev distance (or Tchebychev distance), maximum metric, or L ∞ metric [1] is a metric defined on a real coordinate space where the distance between two points is the greatest of their differences along any coordinate dimension. [2] It is named after Pafnuty Chebyshev.
Many applications for Chebyshev nodes, such as the design of equally terminated passive Chebyshev filters, cannot use Chebyshev nodes directly, due to the lack of a root at 0. However, the Chebyshev nodes may be modified into a usable form by translating the roots down such that the lowest roots are moved to zero, thereby creating two roots at ...