Search results
Results from the WOW.Com Content Network
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
Once the greedy choice is made, the problem reduces to finding an optimal solution for the subproblem. If A is an optimal solution to the original problem S containing the greedy choice, then A ′ = A ∖ { 1 } {\displaystyle A^{\prime }=A\setminus \{1\}} is an optimal solution to the activity-selection problem S ′ = { i ∈ S : s i ≥ f 1 ...
The following greedy algorithm finds a solution that contains at least 1/2 of the optimal number of intervals: [8] Select the interval, x, with the earliest finishing time. Remove x, and all intervals intersecting x, and all intervals in the same group of x, from the set of candidate intervals. Continue until the set of candidate intervals is ...
But in complex situations it can easily fail to find the optimal scheduling. HEFT is essentially a greedy algorithm and incapable of making short-term sacrifices for long term benefits. Some improved algorithms based on HEFT look ahead to better estimate the quality of a scheduling decision can be used to trade run-time for scheduling performance.
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
EDF is an optimal scheduling algorithm on preemptive uniprocessors, in the following sense: if a collection of independent jobs, each characterized by an arrival time, an execution requirement and a deadline, can be scheduled (by any algorithm) in a way that ensures all the jobs complete by their deadline, the EDF will schedule this collection ...