Ad
related to: linear term in quadratic equation
Search results
Results from the WOW.Com Content Network
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic
If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve ...
In general, a quadratic equation can be expressed in the form + + =, [42] where a is not zero (if it were zero, then the equation would not be quadratic but linear). Because of this a quadratic equation must contain the term a x 2 {\displaystyle ax^{2}} , which is known as the quadratic term.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial. The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. Unlike other constant polynomials, its degree is not zero.
In terms of a new quantity , this expression is a quadratic polynomial with no linear term. By subsequently isolating ( x − h ) 2 {\displaystyle \textstyle (x-h)^{2}} and taking the square root , a quadratic problem can be reduced to a linear problem.
If none of the terms are 0, then the form is called nondegenerate; this includes positive definite, negative definite, and isotropic quadratic form (a mix of 1 and −1); equivalently, a nondegenerate quadratic form is one whose associated symmetric form is a nondegenerate bilinear form.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Ad
related to: linear term in quadratic equation