Search results
Results from the WOW.Com Content Network
Figure 1. The overall reaction of catechol 1,2-dioxygenase. Using a non-heme iron(III) complex, 1,2-CTD is able to oxidatively cleave catechol into cis,cis-muconic acid. More specifically, 1,2-CTD is an intradiol dioxygenase, a family of catechol dioxygenases that cleaves the bond between the phenolic hydroxyl groups of catechol using an Fe 3 ...
Catechol dioxygenases are metalloprotein enzymes that carry out the oxidative cleavage of catechols.This class of enzymes incorporate dioxygen into the substrate.Catechol dioxygenases belong to the class of oxidoreductases and have several different substrate specificities, including catechol 1,2-dioxygenase (EC 1.13.11.1), catechol 2,3-dioxygenase (EC 1.13.11.2), and protocatechuate 3,4 ...
The catechol dioxygenases, some of the most well-studied dioxygenase enzymes, use dioxygen to cleave a carbon-carbon bond of an aromatic catechol ring system. [4] Catechol dioxygenases are further classified as being “extradiol” or “intradiol,” and this distinction is based on mechanistic differences in the reactions (figures 1 & 2).
The 5 substrates of this enzyme are anthranilate, NADH, NADPH, H +, and O 2, whereas its 5 products are catechol, CO 2, NAD +, NADP +, and NH 3. This enzyme belongs to the family of oxidoreductases , specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen.
Homogentisate 1,2-dioxygenase (homogentisic acid oxidase, homogentisate oxidase, homogentisicase) is an enzyme which catalyzes the conversion of homogentisate to 4-maleylacetoacetate. Homogentisate 1,2-dioxygenase or HGD is involved in the catabolism of aromatic rings, more specifically in the breakdown of the amino acids tyrosine and ...
Likewise, the unrelated enzymes methylmalonyl-CoA epimerase, 3-demethylubiquinone-9 3-O-methyltransferase and numerous dioxygenases such as biphenyl-2,3-diol 1,2-dioxygenase, catechol 2,3-dioxygenase, 3,4-dihydroxyphenylacetate 2,3-dioxygenase and 4-hydroxyphenylpyruvate dioxygenase all resemble glyoxalase I in structure. [1]
[1] [2] Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid ...
Alkaptonuria is a rare inherited genetic disease which is caused by a mutation in the HGD gene for the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5); if a person inherits an abnormal copy from both parents (it is a recessive condition), the body accumulates an intermediate substance called homogentisic acid in the blood and tissues.