Search results
Results from the WOW.Com Content Network
joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A −1: R; Z; X electric resistance ...
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units , one joule corresponds to one kilogram - square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2 ).
As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602 176 634 × 10 −19 C, [6] [9] which means an ampere is an electric current equivalent to 10 19 elementary charges moving every 1.602 176 634 seconds or 6.241 509 074 × 10 18 elementary charges moving in a second.
For example, the joule per kelvin (symbol J/K) is the coherent SI unit for two distinct quantities: heat capacity and entropy; another example is the ampere, which is the coherent SI unit for both electric current and magnetomotive force. This illustrates why it is important not to use the unit alone to specify the quantity.
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ). Log-base-10 of the ratios between various measures of energy
SI derived units are units of measurement derived from the seven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In terms of electromagnetism, one watt is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).