Search results
Results from the WOW.Com Content Network
A partial list of Rotman's publications includes: An Introduction to Homological Algebra (1979), Pure and Applied Mathematics, vol. 85, Academic Press; ISBN 0-12-599250-5 [7] An Introduction to Algebraic Topology (1988), Springer-Verlag; ISBN 0-387-96678-1; An Introduction to the Theory of Groups (1995), Springer-Verlag; ISBN 0-387-94285-8
216 A Concise Introduction to Algebraic Varieties, Brian Osserman (2021, ISBN 978-1-4704-6013-6) 217 Lectures on Poisson Geometry, Marius Crainic, Rui Loja Fernandes, Ioan Mărcuț (2021, ISBN 978-1-4704-6430-1) 218 Lectures on Differential Topology, Riccardo Benedetti (2021, ISBN 978-1-4704-6674-9)
William Schumacher Massey (August 23, 1920 [1] – June 17, 2017) was an American mathematician, known for his work in algebraic topology. The Massey product is named for him. He worked also on the formulation of spectral sequences by means of exact couples, and wrote several textbooks, including A Basic Course in Algebraic Topology (ISBN 0-387 ...
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
First published in 1955, for many years the only introductory graduate level textbook in the US, teaching the basics of point set, as opposed to algebraic, topology. Prior to this the material, essential for advanced study in many fields, was only available in bits and pieces from texts on other topics or journal articles.
He was known for his book on non-Euclidean geometry (1st edition, 1974; 4th edition, 2008) [3] [4] and his book on algebraic topology (1st edition, 1967, published with the title Lectures on Algebraic Topology; revised edition published, with John R. Harper as co-author, in 1981 with the title Algebraic Topology: A First Course). [5] [6] [7]
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property .
Chain (algebraic topology) Betti number; Euler characteristic. Genus; Riemann–Hurwitz formula; Singular homology; Cellular homology; Relative homology; Mayer–Vietoris sequence; Excision theorem; Universal coefficient theorem; Cohomology. List of cohomology theories; Cocycle class; Cup product; Cohomology ring; De Rham cohomology; Čech ...