Search results
Results from the WOW.Com Content Network
Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
Moreover, if a function is continuous at each point where it is defined, it is impossible that its graph does intersect any vertical asymptote. A common example of a vertical asymptote is the case of a rational function at a point x such that the denominator is zero and the numerator is non-zero. If a function has a vertical asymptote, then it ...
The tangent function = / has a simple zero at = and vertical asymptotes at = /, where it has a simple pole of residue . Again, owing to the periodicity, the zeros are all the integer multiples of π {\displaystyle \pi } and the poles are odd multiples of π / 2 {\displaystyle \pi /2} , all having the same residue.
For example, the parent function = / has a horizontal and a vertical asymptote, and occupies the first and third quadrant, and all of its transformed forms have one horizontal and vertical asymptote, and occupies either the 1st and 3rd or 2nd and 4th quadrant.
The tangent half-angle substitution parametrizes the unit circle centered at (0, 0). Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.)
In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...