enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    He also claimed that "the first practical application of back-propagation was for estimating a dynamic model to predict nationalism and social communications in 1974" by him. [37] Around 1982, [36]: 376 David E. Rumelhart independently developed [38]: 252 backpropagation and taught the algorithm to others in his research circle. He did not cite ...

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Neural backpropagation - Wikipedia

    en.wikipedia.org/wiki/Neural_backpropagation

    Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).

  5. Almeida–Pineda recurrent backpropagation - Wikipedia

    en.wikipedia.org/wiki/Almeida–Pineda_recurrent...

    Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...

  6. Seppo Linnainmaa - Wikipedia

    en.wikipedia.org/wiki/Seppo_Linnainmaa

    He was born in Pori. [1] He received his MSc in 1970 and introduced a reverse mode of automatic differentiation in his MSc thesis. [2] [3] In 1974 he obtained the first doctorate ever awarded in computer science at the University of Helsinki. [4]

  7. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  8. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop can result in very large weight increments or decrements if the gradients are large, which is a problem when using mini-batches as opposed to full batches. RMSprop addresses this problem by keeping the moving average of the squared gradients for each weight and dividing the gradient by the square root of the mean square.

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    This can perform significantly better than "true" stochastic gradient descent described, because the code can make use of vectorization libraries rather than computing each step separately as was first shown in [6] where it was called "the bunch-mode back-propagation algorithm". It may also result in smoother convergence, as the gradient ...