Search results
Results from the WOW.Com Content Network
Push 3 to the output queue (whenever a number is read it is pushed to the output) Push + (or its ID) onto the operator stack; Push 4 to the output queue; After reading the expression, pop the operators off the stack and add them to the output. In this case there is only one, "+". Output: 3 4 + This already shows a couple of rules:
The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.
A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task. The flowchart shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows.
The Sequence diagram of UML Overview. In software engineering, a sequence diagram [1] shows process interactions arranged in time sequence. This diagram depicts the processes and objects involved and the sequence of messages exchanged as needed to carry out the functionality.
Activity diagrams [1] are graphical representations of workflows of stepwise activities and actions [2] with support for choice, iteration, and concurrency. In the Unified Modeling Language, activity diagrams are intended to model both computational and organizational processes (i.e., workflows), as well as the data flows intersecting with the related activities.
A process flow diagram (PFD) is a diagram commonly used in chemical and process engineering to indicate the general flow of plant processes and equipment. The PFD displays the relationship between major equipment of a plant facility and does not show minor details such as piping details and designations.
The odd–even sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of odd–even, or even–odd comparisons. The passes occur in order pass 1: odd–even, pass 2: even–odd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.