Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 ...
Brine (or briny water) is a high-concentration solution of salt (typically sodium chloride or calcium chloride) in water.In diverse contexts, brine may refer to the salt solutions ranging from about 3.5% (a typical concentration of seawater, on the lower end of that of solutions used for brining foods) up to about 26% (a typical saturated solution, depending on temperature).
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The brine-rich water remains liquid, and its increased density causes this water to sink, setting the stage for the creation of a "brinicle". Its outer edges begin accumulating a layer of ice as the surrounding water, cooled by this jet to below its freezing point, ices up in a tubular or finger shape and becomes self-sustaining.
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
The concentration of the solution can be determined by knowing the number of particles present in it, which can be done by determining the freezing point of the solution. When particles are dissolved in a solution, their freezing point is lowered compared to that of the original solvent. A further increase in the solute decreases the freezing ...
A 52% solution of potassium formate has a freezing point of −60 °C (−76 °F). [7] Potassium formate brines are sometimes used for heat transfer, despite being much more corrosive than many other liquid coolants, especially to zinc and aluminum but even to many steels, [8] though some formulations are compatible with aluminum and steels. [9]