Search results
Results from the WOW.Com Content Network
A dynamic microsimulation pension model is a type of a pension model projecting a pension system by means of a microsimulation and generating the complete history of each individual in a data set. The results of such model offer both the aggregate (e.g. total replacement ratio, implicit debt) and individual indicators (e.g. individual cash ...
In actuarial science, force of mortality represents the instantaneous rate of mortality at a certain age measured on an annualized basis. It is identical in concept to failure rate , also called hazard function , in reliability theory .
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow.The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. [1]
Equation [3] involves the average velocity v + v 0 / 2 . Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...
De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human mortality.
Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.
The Lee–Carter model is a numerical algorithm used in mortality forecasting and life expectancy forecasting. [1] The input to the model is a matrix of age specific mortality rates ordered monotonically by time, usually with ages in columns and years in rows. The output is a forecasted matrix of mortality rates in the same format as the input.
A different interpretation of the lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then give rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.